
A Tutorial-Style Introduction to DY?

Karthikeyan Bhargavan1, Abhishek Bichhawat2, Quoc Huy Do3,4, Pedram
Hosseyni3(�), Ralf Küsters3, Guido Schmitz3,5, and Tim Würtele3

1 INRIA, Paris, France karthikeyan.bhargavan@inria.fr
2 IIT Gandhinagar, Gandhinagar, Gujarat, India abhishek.b@iitgn.ac.in

3 University of Stuttgart, Stuttgart, Germany {quoc-huy.do, pedram.hosseyni,
ralf.kuesters, guido.schmitz, tim.wuertele}@sec.uni-stuttgart.de

4 GLIWA GmbH, Weilheim i.OB., Germany
5 Royal Holloway University of London, Egham, Surrey, UK

Abstract. DY? is a recently proposed formal verification framework for
the symbolic security analysis of cryptographic protocol code written in
the F? programming language. Unlike automated symbolic provers, DY?

accounts for advanced protocol features like unbounded loops and muta-
ble recursive data structures as well as low-level implementation details
like protocol state machines and message formats, which are often at the
root of real-world attacks. Protocols modeled in DY? can be executed,
and hence, tested, and they can even interoperate with real-world coun-
terparts. DY? extends a long line of research on using dependent type
systems but takes a fundamentally new approach by explicitly modeling
the global trace-based semantics within the framework, hence bridging
the gap between trace-based and type-based protocol analyses. With this,
one can uniformly, precisely, and soundly model, for the first time using
dependent types, long-lived mutable protocol state, equational theories,
fine-grained dynamic corruption, and trace-based security properties like
forward secrecy and post-compromise security.
In this paper, we provide a tutorial-style introduction to DY?: We illus-
trate how to model and prove the security of the ISO-DH protocol, a
simple key exchange protocol based on Diffie-Hellman.

Keywords: Cryptographic Protocols · Protocol Analysis · Mechanized
Proofs · Formal Methods · F?

1 Introduction

Since the proposal of the authentication protocol by Needham and Schroeder [26],
the security of such cryptographic protocols has become a continuous field of
study for the research community. The first formalization for symbolic protocol

This is the author’s own version of the paper. It was originally published in Protocols,
Logic, and Strands: Essays Dedicated to Joshua Guttman on the Occasion of His 66.66
Birthday, Springer LNCS 13066, pp. 1–21, 2021. The final authenticated version is
available online at https://doi.org/10.1007/978-3-030-91631-2_4. Only for personal
use, do not redistribute.

https://doi.org/10.1007/978-3-030-91631-2_4

2 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

analysis has been proposed by Dolev and Yao in [13]. Still, a severe protocol
flaw in the public-key authentication protocol (NS-PK) proposed by Needham
and Schroeder remained undiscovered for 17 years: In [23], Lowe presented an
attack that breaks the security of the NS-PK protocol by mixing two concurrent
protocol sessions. Lowe also proposed a fix and showed that this fix is indeed
sufficient using the symbolic tool FDR [24].

Since then, the research community has developed several formal analysis tech-
niques and (semi-)automated tools to verify cryptographic protocols (see [2,9] for
detailed surveys). The approaches can be divided into two categories: i) compu-
tational approaches, where proofs are built on precise probabilistic assumptions
of the underlying cryptographic primitives, and ii) symbolic approaches which
build upon a simpler, abstract notion of these primitives. While computational
analyses are more precise, they require significantly more effort, and even with
the aid of mechanized verification tools, it becomes infeasible to cover all protocol
features and attack vectors for large protocols. In contrast, symbolic analyses
scale much better, but with less precision regarding cryptographic details.

The symbolic approach has also been in the research focus of Joshua Guttman
for a long time: For example, in [31], Thayer, Herzog, and Guttman have pro-
posed a framework that formalizes possible executions of a protocol together with
possible actions of an adversary into so-called strand spaces and enables precise
proofs w.r.t. different kinds of attackers. This approach is extended, exercised,
and refined in several papers by Guttman (and others), e.g., (1) to prove inde-
pendence of sub-protocols’ security goals when combining protocols with shared
cryptographic material [18]; (2) by introducing authentication tests [19] to prove
certain authentication properties more easily and using those to not only analyze,
but also to design security protocols [17]. Other contributions include work on
an algebra for symbolic Diffie-Hellman protocol analysis [14] and reasoning on
participant’s state [27].

By now, the field has matured a lot. Many real-world protocols have been
analyzed using symbolic methods, which often are based on Joshua’s work. For ex-
ample, important protocols like TLS [7,12], Signal [11,21], IKEv2 [1], OAuth [15],
and OpenID Connect [16] have undergone symbolic analysis, often revealing
severe flaws. In many cases, such protocols have been analyzed using automated
provers for symbolic protocol analyses, such as AVISPA [1], ProVerif [10], and
Tamarin [25], with Tamarin being based on the concept of strand spaces. These
tools can quickly analyze all possible execution traces of protocols and find
attacks like Lowe’s and much more sophisticated ones in a matter of seconds.

Still, existing symbolic analysis tools, such as ProVerif and Tamarin, have
many limitations: (1) These tools do not scale well for complex protocols, as
they always perform whole protocol analysis and cannot break the analysis into
smaller (re-usable) modules. (2) Protocols with unbounded loops, for which a
proof typically needs inductive reasoning, as well as protocols that use recursive,
unbounded data structures are very challenging for these tools. (3) Models for
these tools are far from actual implementations that take low-level protocol
details into account.

A Tutorial-Style Introduction to DY? 3

Existing symbolic analysis frameworks based on dependent-type systems (see,
e.g., [3,8]) mitigate some of these limitations as they focus on implementations
and modular analysis. However, they come with other restrictions: For example,
these works do not model global trace-based runtime semantics and rely on
external security arguments (typically proven by hand); security goals such as
forward secrecy and post-compromise security are difficult to express and prove;
they do not model cryptographic primitives like Diffie-Hellman or XOR that
require equational theories and they only have limited support for stateful code
with mutable data structures.

A recent approach, the DY? framework [5], tries to combine the best of both
worlds. It allows for modeling protocols in detail, including implementation fea-
tures, such as state management, that are usually left out in other approaches.
Moreover, the models are executable, and hence, testable using (say) test vectors
from protocol specifications. Protocols can even be implemented in DY? to a level
of detail that yields implementations that interoperate with real-world counter-
parts [6]. DY? is based on the full-fledged programming language F? [29,30], which
provides an advanced dependent type system and a powerful proof environment.
The F? type-checker can prove that programs meet their specifications using a
combination of SMT solving and interactive proofs. With F?’s type system and
proof environment, DY? is also able to build and verify protocols in a modular
way, use induction-based proofs and capture unbounded and recursive protocols
with complex data structures.

This new approach has already been used to analyze complex protocols: In [5],
we have analyzed the Signal protocol, which is used in many popular messaging
systems and makes heavy use of Diffie-Hellman exponentiation, signatures, key
derivation functions, symmetric encryption, and MACs. Signal employs multiple
layers of recursive sub-protocols, which we have modeled/implemented and an-
alyzed in detail in DY?. Our work on Signal is the first type-based formulation
and proof of post-compromise security for any protocol. In [6], we analyzed the
ACME protocol, which is used by certification authorities, such as Let’s Encrypt,
to verify domain ownership and issue certificates. Our model of ACME enjoys
an unprecedented level of detail, sufficient to be interoperable with real-world
implementations; it, among others, can interact with the Let’s Encrypt server.
Our model and proof of ACME totals more than 16,000 lines of F? code and
is one of the largest and most in-depth analyses of a cryptographic protocol
standard in the literature. Again, in the analysis we precisely handle recursive
sub-protocols and implementation loops.

In this paper, we provide a tutorial-style introduction to DY? using the
relatively simple ISO-DH authentication and key establishment protocol [20] as
a running example. In Section 2, we first give an overview of DY? itself. The ISO-
DH protocol is briefly described in Section 3. We show how to model ISO-DH in
DY? in Section 4, with the analysis of this protocol in DY? presented in Section 5.
The code of our analysis is available in [4]. We conclude in Section 6. We refer
the reader to [5,6] for a detailed introduction of DY?, more complex case studies,

4 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

and a more comprehensive discussion of related work. More information on the
umbrella project REPROSEC can be found in [28].

2 The DY? Framework

The DY? framework has been proposed in [5]. In this section, we give a brief
overview of this framework following the descriptions of the original publication.
For full details, we refer the reader to [5].

The DY? framework is meant to model a distributed system that consists of
principals executing protocol code and exchanging messages over an untrusted
network which is under the control of a Dolev-Yao adversary.

A central component of our framework is the global (execution) trace. Among
others, it records the history of the states of all principals at any time throughout
the run of a system as well as all messages sent over the network by principals. A
principal’s state may contain arbitrary information. For example, it can contain
long-lived keys, such as the principal’s public and private keys. Also, principals
may be involved in an unbounded number of sessions at the same time. Hence,
a principal’s state also contains the current session state for all of its sessions.

In the simplest case, at each protocol step a principal first retrieves its current
state from the global trace, possibly reads a message from the network (and hence,
from the trace), performs its computation, sends messages back to the network
(and hence, to the trace), and at the end of the invocation saves its new state in
the global trace. Being based on a fully-fledged programming language, DY?, of
course, does not restrict protocol implementations to follow that pattern and it
allows for arbitrary computations, including, for example, loops within protocol
steps as well as iterations of subprotocols.

The trace also records the nonces generated by principals and documents
whether principals or their sessions (even versions of sessions, see below) are
corrupted by the adversary, who can corrupt principals dynamically in a fine-
grained way.

The trace determines the attacker’s knowledge at any point in a run: the
attacker knows all messages that have been sent on the network thus far as
well as the state of corrupted principals or corrupted sessions of principals. This
knowledge in turn determines which messages the attacker can send to (sessions
of) principals. An attacker can only construct and send messages it can derive
from its knowledge. In particular, it cannot simply guess secrets.

For principals to interact with the trace, we provide a set of modules (con-
taining APIs). These modules are layered : At the bottom is the symbolic runtime
layer, which allows principals to access and manipulate the trace in a straight-
forward way. On top of this layer, we construct the labeled layer, which factors
out generic security abstractions and invariants, all of which are mechanically
proven sound in F? w.r.t. to the lower-level trace-based runtime semantics of the
symbolic runtime layer.

We typically prove security properties in DY? with the help of the labeled
layer: At the heart of our methodology is a security-oriented coding discipline

A Tutorial-Style Introduction to DY? 5

for protocol code written in terms of secrecy labels and usage constraints. Labels
allow us to proactively track knowledge of secrets. Whenever some secret is
generated (e.g., a nonce), we annotate this secret with a label that states who is
allowed to know this secret.

Usage constraints complement labeling: We annotate key material with a
usage, for example: a key may only be used for signing but not for encryption
(which rules out decryption oracles). Moreover, the annotation can also express
that a key may only be used for cryptographic operations with certain payloads,
e.g., that some key is only ever used to sign specific messages. This allows us to (by
local type-checking) even reason about the behavior of other honest principals.

The labeling layer contains a generic trace invariant that describes a valid
trace. For example, in a valid trace, messages sent to the network must always
be publishable (according to their labeling) and principals only store terms in
their states that they are allowed to know. This means that, e.g., code modeling
a protocol in which principals send secrets unprotected via the public network
will violate our valid trace invariant. DY? comes with generic security lemmas,
proven in F? in the framework itself, which show that the labeling of messages
is actually sound w.r.t. the symbolic runtime layer.

The global trace also allows us to naturally and explicitly express security
properties, such as secrecy properties and authentication/integrity properties,
involving features like (long-lived) mutable state, dynamic compromise, forward
secrecy, and post-compromise security that require reasoning about the adver-
sary’s knowledge and the precise order of events in the global trace. As mentioned
in Section 1, all this was lacking in previous dependent type based approaches.
In order to prove such properties, we typically formulate global invariants over
the global trace which the code of every principal has to preserve. The invariants
must be strong enough to then imply the security properties we care about.

States and Corruption. As mentioned above, principals’ states are recorded
in the global trace. Every time a principal stores its state, a new (immutable)
entry is appended to the trace that contains the principal’s identity and the whole
principal’s state. This state is grouped in so-called sessions, each annotated with
a version identifier. Sessions can store long-term keys, such as a principal’s public
and private keys, but also, as the name suggests, the principal’s states of arbitrary
many ongoing protocol sessions. An adversary can at any time compromise a
specific version of a session of some principal. Such a compromise is recorded
in the trace and the adversary can use all information stored in that state
session. This particularly fine-grained notion of compromise allows an attacker
to dynamically compromise both long-term keys and ephemeral protocol states.
By this, we can model that only a subset of data stored in a principal’s state
leaks to the adversary, allowing us, for instance, to analyze forward secrecy and
post-compromise security. The attacker, however, is not restricted by this model
as it can corrupt as many versions and sessions as it likes.

Equational Theories. DY? builds upon an abstract type of byte strings called
bytes and defines a series of (abstract) conversion and cryptographic functions for
constructing and parsing byte strings. One can also define equational theories on

6 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

bytes to capture algebraic properties. For example, for Diffie-Hellman, we have
the functions dh_pk and dh, where dh_pk reflects the generation of the public key
(gy) from a private key (y), and dh reflects the computation of the shared secret
(gxy) from a private key (x) and public key (gy).

We technically represent equational rules as F? lemmas. For example, the
equational rule (gx)y = (gy)x is expressed as follows:7

val dh_shared_secret_lemma: x:bytes → y:bytes →
Lemma ((dh x (dh_pk y)) == (dh y (dh_pk x)))

DY? already provides a large set of typical equational rules, which —if needed—
can easily be extended (for DH, XOR, signatures, etc.). For example, in [6] we
add a property called non-destructive exclusive ownership for signatures.

Modeling Adversarial Behavior. We model an active network attacker, in
the tradition of Dolev and Yao [13]. The attacker can intercept, modify, and
block all messages sent on the network. The attacker can compromise any session
state and can call any cryptographic function (using messages/principal’s states
it already knows), and can schedule any part of a protocol, i.e., functions that
model the behavior of honest parties (see below). By using these capabilities,
the attacker grows its knowledge as the global trace is extended and can try
to break the protocol’s security goals. Essential for an attacker’s behavior is its
knowledge. The attacker’s knowledge at each index i in the global trace is logically
characterized using a set of derivation rules. For example, the attacker can
immediately derive literals, read any message sent on the network, read previously
compromised states, and decrypt ciphertexts for which it knows the corresponding
keys. To verify the correctness and expressiveness of our attacker model, we
implement a (typed) API for the attacker with commonly expected operations
like sending and receiving messages or corrupting principals. By typechecking
this attacker API, we prove that our trace invariants do not restrict the adversary
in unexpected ways, a property called attacker typability.

Labeled Crypto API. The core of the labeled layer is a labeled crypto API
that provides labeled wrappers for all the crypto functions on the symbolic
runtime layer and internally enforces labeling and usage rules. Each byte in bytes
is assigned a unique label that indicates who may know it. For example, a label
CanRead [P p1; P p2] indicates a secret that only the principals p1 and p2 may
know, whereas the label public indicates that anyone may know it. Literals are
always labeled public, nonces are assigned a label when they are generated.

Secrecy labels form a lattice, where can_flow i l1 l2 says that the label l1 is
equal or less strict than the label l2 at trace index i. In particular, public flows to all
other labels, and CanRead [P p] can flow to public at index i if Compromised p sid v
(for some session sid and some version v) occurs in the trace at or before i.

The labeled APIs enforce a labeling discipline that ensures that secret values
never flow to public channels. In particular, we require that the labels of all
7 Note that we format all F? code in this paper using a pretty-printer, i.e., some syntac-
tic constructs are displayed using well-known mathematical symbols for readability,
such as →, ∀, ∃, and λ, instead of their textual representations.

A Tutorial-Style Introduction to DY? 7

network messages must flow to public. If a secret value has to be sent over the
network, it must first be encrypted with a key whose label is at least as strict as
the message’s label. We refer the reader to [4] for the full set of labeling rules.

In addition to secrecy labels, the labeled APIs also enforce usage pre-conditions.
Each key is assigned an intended usage. For example, a signature key cannot
be used as an encryption key. Furthermore, we define a global usage predicate
controlling what kinds of messages a given key can encrypt/sign. Of course, these
restrictions only apply to honest principals. For example, the labeled API for
the signature and verification functions is as follows:8

val vk: sk:bytes → pk:bytes{is_labeled_public pk}
val sign: #p:global_usage →#i:timestamp →#l:label →#l’:label →

k:bytes{∃ s. is_signing_key p i k l s} → nonce:bytes →
m:bytes{get_label m == l’ ∧ ∀s. is_signing_key p i k l s
=⇒ p.usage_preds.can_sign i s (vk k) m} →

tag:bytes{can_flow i (get_label tag) l’}
val verify: pk:{is_labeled_public pk} →m:bytes → tag:bytes → bool
val verify_lemma: #p:global_usage →#i:timestamp →#l1:label →#l2:label →

pk:bytes →m:msg p i l1 → tag:msg p i l2 →
Lemma (if verify pk m tag then (∀ l s. is_verification_key p i pk l s

=⇒ (can_flow i l public ∨ (∃ j . j ≤ i ∧ p.usage_preds.can_sign j s pk m)))
else (C.verify pk m s = false))

Signing keys are supposed to be secrets (typically labeled with CanRead [P prin]
to model that they should be known only to some principal prin) and marked
to be used as signing keys (along with some string s that we can use to tag
such keys in order to track them in our proofs). The corresponding verification
keys (generated with vk) are always labeled public. For each protocol, we define
a (global) predicate can_sign i s k m (part of the global usage data structure p)
that indicates if at some timestamp i the private key corresponding to the public
key k (tagged with the string s) may sign the message m. This predicate is then
used as a pre-condition for sign, ensuring that protocol code does not accidentally
call sign with a message that does not conform to can_sign. Conversely, if verify
succeeds, then the API guarantees that the signature must be valid and the
signed message must satisfy can_sign, unless the signing key can be known by
the attacker (see verify_lemma above); in this lemma, l indicates the label of the
private key of pk.

For Diffie-Hellman, each DH private key has the type dh_private_key p i l s
indicating that it has a secrecy label l and that the shared secret generated
from this private key should have the usage defined by the function dh_usage

8 Note that the code excerpts we show in this paper are a bit simplified for presentation
purposes (see [4] for the full code). Further note that we here use so-called refinement
types provided by F? to further restrict types. For example, the result pk of the
function vk is of type bytes, which is —by refinement— further required to satisfy
the predicate is_labeled_public, which states that the byte string pk must be labeled
as public. We also make use of so-called implicit arguments, which are marked by #.
In many cases, these parameters can be dropped when calling the function, as F?

can derive them from the context.

8 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

that takes as parameter the string s. The corresponding public keys have type
dh_public_key p i l s. The declarations in F? are as follows:
val dh_usage: string → usage
val dh_pk: #p:global_usage →#i:nat →#l:label →#s:string →

dh_private_key p i l s → dh_public_key p i l s
val dh: #p:global_usage →#i:nat →#l1:label →#l2:label →#s:string →

dh_private_key p i l1 s → dh_public_key p i l2 s →
b:bytes{has_label i b (join l1 l2) ∧ has_usage i b (dh_usage s)}

The function dh takes a private key with type dh_private_key p i l1 s and a
public key with type dh_public_key p i l2 s to compute a shared secret with label
join l1 l2 and usage defined by dh_usage given the string s. The label join l1 l2
means that the shared secret may be used in any session covered by l1 or l2. We
define several other variants of the dh function, including for cases where the
peer’s public key is untrusted.

The types for the rest of the cryptographic API are similar. In each con-
struction, the arguments must satisfy some protocol-specific usage predicate
(can_aead_encrypt, can_mac, ...), and in all encryption functions, we ask that mes-
sages must flow to the labels of the decryption keys.

Specifying Protocols. A protocol is written as a set of functions, each of
which defines one protocol step performed by a principal. These functions can
be called by the adversary in arbitrary order. The parameters of these functions
allow the adversary to specify which session of the protocol is to be invoked and
which message the principal is supposed to read from the network. In particular,
we have no restrictions on the number of principals or sessions in a protocol run.

When called, a function typically parses the principal’s state as well as the
network message to some semantically rich data type (we provide protocol-
dependent parsing and serializing functions). Next, it performs the computation
of the respective protocol step, serializes its results (a new state for this principal
and possibly new network messages), and places these results on the trace (by
storing the new state and sending the network messages). Since with F? we have
a full-fledged functional programming language at our disposal, the functions
can perform arbitrary computation and, in combination with global traces, easily
deal with recursive, mutable, and long-lived state, unlike previous approaches.

The protocol code for each principal cannot directly read or write to the
trace, but instead must use the labeled API that enforces an append-only disci-
pline on the global trace using a custom computational and stateful (monadic)
effect called LCrypto. Recall that effects (and so-called monads) are common in
functional programming languages, for example, to implement stateful functions.
LCrypto allows the function to use and modify the global trace, without provid-
ing the global trace as a parameter to the function. The effect also captures
trace invariants (see below). Functions annotated with the LCrypto effect are
total (i.e., they always terminate) but can return errors, which are automatically
propagated by LCrypto.

The labeled API provides functions to generate new nonces, send and receive
messages, store and retrieve states, and log security events. Using these functions,

A Tutorial-Style Introduction to DY? 9

and a library of functions for cryptography and bytes manipulations, we can build
stateful implementations of protocols.

The LCrypto effect enforces the global trace invariant valid_trace. Functions
in the trace API and with the LCrypto effect take valid_trace as both pre- and
post-condition. Hence, this generic trace invariant must hold in all global traces
generated by protocol code that follows the labeling rules. The invariant consists
of several components, some generic and some that have to be defined for each
protocol. The following F? code specifies the generic parts with the protocol-
specific invariants/predicates given in the argument pr:

1 let valid_trace (pr:preds) (tr:trace) =
2 (∀ (i:timestamp) (t:bytes) (s:principal) (r:principal). i < trace_len tr =⇒
3 (was_message_sent_at i s r t =⇒ (is_publishable pr.global_usage i t))) ∧
4 (∀ (i:timestamp) (p:principal) (v:version_vec) (s:state_vec). i < trace_len tr =⇒
5 (state_was_set_at i p v s =⇒ ((Seq.length v = Seq.length s) ∧
6 (∀ j. j < Seq.length v =⇒ pr.trace_preds.session_st_inv i p s[j] v[j])))) ∧
7 (∀ (i:timestamp) (p:principal) (e:event). i < trace_len tr =⇒
8 (did_event_occur_at i p e =⇒ (pr.trace_preds.can_trigger_event i s e)))

The invariant states that i) (Lines 2–3) any message t that is sent on the network
(at index i by the sender s to the intended receiver r) must have a label that can
flow to public; ii) (Lines 4–6) any state (with sessions s and corresponding versions
v)9 that is stored by an honest principal p at index i must satisfy the protocol-
specific state invariant session_st_inv i p s’ v’ contained in pr for each session s’ (in
s) and their corresponding version identifier v’ (in v); iii) (Lines 7–8) any event e
logged by principal p at index i must satisfy the protocol-specific event predicate
can_trigger_event i p e in pr. We also prove that all functions in the attacker API
preserve valid_trace (regardless of protocol-specific predicates), i.e., the attacker
is not restricted by this invariant.

For a protocol model, we define the above-mentioned protocol-specific in-
variants pr and provide pr to the effect LCrypto as an argument. As valid_trace is
parameterized by pr, the effect can then instantiate this invariant for a concrete
protocol. Note that pr also contains usage predicates for cryptographic functions,
such as can_sign mentioned above. Hence, these predicates are propagated in the
same way as valid_trace.

Protocol-specific invariants can be parameterized as well. This way, we can
easily define re-usable modular layers, such as a generic PKI layer (which we also
provide). This PKI layer, for example, provides key material to each principal
stored in distinguished sessions. To enable layering, the protocol-specific invariant
of this layer takes another (higher-layer) protocol-specific invariant pr as an
argument and combines both to pki pr, where pki maps pr to the richer invariant.

Specifying Security Goals. The labeled layer of the DY? framework allows us
to specify security goals in several ways: i) we can use labeling to specify “simple”
goals such as the secrecy of certain terms; ii) we can use the state invariant
9 Sessions and versions are stored in two separate sequences s and v (of the same
length). For each session s’ that is stored at index j in s, the corresponding version
identifier v’ is stored at the same index j in v.

10 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

and event predicate from valid_trace to specify conditions under which a certain
principal may reach a certain state/record an event; iii) we can specify more
complex properties independently and show that these are implied by valid_trace.
In the latter case, we have to define the state invariant and event predicate such
that they reflect sufficient properties of the protocol to prove the security goal.

Symbolic Execution. To enable debugging and testing protocol models, we
provide a symbolic implementation of all abstract parts of the symbolic runtime
layer. In particular, we provide an algebraic model for our basic data type bytes
and all conversion and cryptographic functions of this layer. We emphasize that
this model is mechanically proven to satisfy the equational theory, i.e., all lemmas
describing this theory must hold true for the implementation.

For each protocol that we model in DY?, we can write a scheduler function
which calls the protocol functions in the expected order. This scheduler essentially
describes a run of the protocol and can be seen as a test case. We can then compile
the scheduler along with the DY? framework and the protocol implementation to
OCaml and execute this code to print out a symbolic trace of a protocol run. This
way, we can inspect symbolic runs and check our model for errors, something not
possible in tools like Tamarin and ProVerif. We can also implement further test
cases and also implement and check known attacks for unfixed protocol code.

3 The ISO-DH Protocol

The ISO-DH protocol is a variant of the Diffie-Hellman protocol for authenticated
key exchanges. More precisely, it extends the Diffie-Hellman protocol by adding an
authentication mechanism as defined in [20]. The protocol is depicted in Figure 1
with an initiator I and receiver R. For computing and verifying signatures, the
protocol requires both parties to have a key pair and know the corresponding
public key of the other party. We denote the private signing key of P by skP and
the corresponding public key by pkP .

Security Goals. The primary goal of the protocol is to provide secrecy of the
generated shared key (gxy) if the protocol is run between an honest initiator
and an honest responder. More precisely, the protocol aims to achieve forward
secrecy in the presence of an active network attacker. That is, even if the attacker
corrupts the long-term secrets of the principals (the signature keys) after a shared
key has been established, the attacker is not able to obtain the shared key. The
protocol also aims to provide mutual authentication by means of the signatures
added to the Diffie-Hellman protocol.

4 Modeling ISO-DH in DY?

We now illustrate the overall modeling process in DY? using the ISO-DH protocol
as an example. This section presents the model of the first two steps of this
protocol in detail (up to the point where the responder processes the first message
and sends the second message) and gives a brief overview of the remaining steps.

A Tutorial-Style Introduction to DY? 11

Initiator I Responder R

Prior Knowledge:
sk I , R 7→ pkR,M 7→ pkM , · · ·

Prior Knowledge:
skR, I 7→ pk I ,M 7→ pkM , · · ·

Initiate:
generate x

Respond:
generate y

MSG1 | I | gx

MSG2 | R | gy | sign(skR, MSG2 | I | gx | gy)

MSG3 | sign(sk I , MSG3 | R | gx | gy)

InitiatorSessionKey:
I ↔ R : ki = (gy)x

ResponderSessionKey:
I ↔ R : kr = (gx)y

Fig. 1. Signed Diffie-Hellman Protocol (ISO-DH) [22]. We use message tags to
avoid reflection and type confusion attacks. This figure is taken from [5].

The full DY? implementation of this protocol can be found in [4]. We note that
the analysis of ISO-DH has first been conducted as a case study in [5] but was
only briefly sketched there. Here, we go into much more detail regarding both
the formal model as well as the security analysis.

Initiator: Send First Message. To model the first step of the protocol, we
define a function initiator_send_msg_1 which chooses a fresh nonce x for a principal
a (the initiator), sends the first protocol message to a principal b (the responder),
and stores the relevant values in the principal state of a. The interface and
the implementation of this function are shown in Figure 2. As specified by the
interface in Lines 2 to 6 of Figure 2, the function has two principals a and b as
input parameters. The return values are idx_msg and idx_session, where idx_msg is
the trace index at which the global trace records the sent message and idx_session
is the index in the trace at which the new state of the initiator is recorded.
Furthermore, the function has the LCrypto effect, parametrized by pki isodh, with
isodh being the protocol-specific predicates (see also Section 2).

Before explaining the function in detail, we note that the LCrypto effect allows
us to specify pre- and post-conditions using the requires and ensures clauses. The
initiator_send_msg_1 has no additional pre-conditions except those required by the
effect, i.e., that the (implicit) input trace is valid (see Line 5). In Line 6, the
post-condition of the function specifies a condition on the input trace t0, the
return values (i, si), and the output trace t1. More precisely, the length of the
output trace must be larger than the length of the input trace, and the message
index i must point to the last trace entry of the output trace t1. Recall that the
LCrypto effect (implicitly) also stipulates the validity of the output trace. Users
do not have to state this.

12 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

1 // Interface of the first protocol step
2 val initiator_send_msg_1:
3 a:principal → b:principal →
4 LCrypto (idx_msg:timestamp × idx_session:nat) (pki isodh)
5 (requires (λ _→>))
6 (ensures (λ t0 (i,si) t1 → trace_len t1 > trace_len t0 ∧ i == trace_len t1 − 1))
7
8 // Implementation of the first protocol step
9 let initiator_send_msg_1 a b =

10 let si = new_session_number a in
11 let (|t0,x|) = rand_gen (readers [V a si 0]) (dh_usage "ISODH.dh_key") in
12 let gx = dh_pk x in
13
14 let ev = initiate a b gx in
15 trigger_event a ev;
16
17 let t1 = global_timestamp () in
18 let new_ss_st = InitiatorSentMsg1 b x in
19 let new_ss = serialize_valid_session_st t1 a si 0 new_ss_st in
20 new_session a si 0 new_ss;
21
22 let t2 = global_timestamp () in
23 let msg1 = Msg1 a gx in
24 let w_msg1 = serialize_msg t2 msg1 in
25 let i = send a b w_msg1 in
26 i, si

Fig. 2. Interface and implementation of the first protocol step. See module
ISODH.Protocol in [4].

The implementation of initiator_send_msg_1 starts with choosing a new state
session index in Line 10, which is used to store information related to one protocol
session. The function new_session_number is provided by DY? and returns the next
available session index for the current principal state of a.

Next, the function generates a fresh nonce x using the DY? function rand_gen
in Line 11. The label of this nonce is (readers [V a si 0]), indicating that only
version 0 of the state session si of principal a may read the nonce. Furthermore,
the usage of the nonce is specified as (dh_usage "ISODH.dh_key"). By calling the
DY? function dh_pk, the DH public key gx is calculated.

In Lines 14 and 15, an application-specific event is created and added to the
trace, stating that a protocol flow is initiated with initiator a, responder b, and
initiator public value gx.

The relevant information about the protocol flow is saved in the principal
state of a in Lines 18 to 20. In particular, the intended responder b and the
nonce x are stored in an application-specific session type InitiatorSentMsg1 and
this state session is serialized (i.e., turned into a value of type bytes). In Line 20,
the serialized state session is appended to the current principal state of a and

A Tutorial-Style Introduction to DY? 13

the new principal state is then stored in the global trace. Recall that a principal
p may only store state labeled to be readable by p. This is a time-dependent
property, which is why the timestamp (Line 17) is needed.

In Lines 22 to 25, the function once more acquires a new timestamp (i.e., the
current length of the trace, which is not equal to t1, as the state of principal a was
updated in Line 20) and creates an application-specific message Msg1 containing
the identity of the initiator and the DH public key gx. This message is serialized
in Line 24 and sent in Line 25. The send function appends the message to the
global trace and returns the message’s trace index. (Note that the message has
to be publishable, a time-dependent property.)

The function returns two indices, as already mentioned above. With these
values, it is possible to write a scheduler for symbolic test cases as described in
Section 2.

Responder: Receive Message and Send Reply. The steps performed by
the receiver are shown in Figure 3. As mentioned, DY? supports a high de-
gree of modularity. In particular, we can split up large functions into small
helper functions, as shown below: The main function modeling the second step is
responder_send_msg_2 (see module ISODH.Protocol in [4]), which we split up into
two helper functions, one for receiving the first protocol message and one for send-
ing the second protocol message (for brevity, we omit the responder_send_msg_2
function, as this function simply uses the two helper functions shown in Figure 3).
The security, i.e., non-violation of the trace invariant, is proven for each (helper)
function independently, modularizing proof obligations on a fine-grained level.

The function that models receiving the first message, receive_msg_1_helper,
is shown in Lines 1 to 12 of Figure 3. In Line 8, the helper function calls the
receive_i function of DY?, which is given the trace index at which the message to
be read is stored and the receiver’s name. However, the receive function does not
provide any guarantees on authenticity or confidentiality of the received message
and only guarantees that a message was sent at the given trace index. (The
operation might fail and the failure is propagated by the LCrypto effect.) The
received message is then parsed in Lines 9 to 12.

The second helper function send_msg_2_helper is similar to the initiator func-
tion shown above. The responder creates the values y and gy in Lines 23 and
24, stores all relevant values in a new session in its state in Lines 26, 27, and 31,
and generates an event in Line 30. The responder creates the second protocol
message in Line 38, serializes it in Line 39, and sends the message in Line 40.

For computing the signature contained in the second protocol message, the
responder first retrieves its private key in Line 21 using the get_private_key func-
tion. This function is provided by the PKI layer of DY? and returns the key of b
of the specified key type (here, the key type is SIG, hence the function returns a
signing key). The responder creates the signature in Lines 33 to 36. The function
sigval_msg2 (used in Line 34) is a helper function that creates the payload for
the signature, i.e., a concatenation of the identifier a, the values gx and gy, and
a string "msg2" (as a tag).

14 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

The assert clause in the code states a simple property that facilitates the F?

proofs (see also Section 5).

Remaining protocol steps. For details on the remaining protocol steps, we
refer to the reader to [4]. The model implements the remaining steps from Figure 1
similarly to the functions presented in this section. Upon finishing the protocol
run, the initiator and responder each write events to the trace indicating that
they completed a protocol run, and in these events include their names, the values
gx, gy, and the shared key k. In the following, we briefly explain the verification
of the signature by the initiator, as this step is crucial for the proof outlined in
Section 5.

When the initiator receives the second message, it verifies the signature
contained in the message using the helper function shown in Figure 4. The
initiator calls the function with the following arguments: the current trace length
i, the session and version indices si and vi at which the initiator manages the
values of the protocol flow, the principal names a and b, the public key pkb of
b (for verifying the signature), the values gx and gy of the current protocol flow,
and the signature sig contained in the second protocol message.

First, the initiator creates the message for which the signature should be valid
in Line 2 of Figure 4. As described previously, the sigval_msg2 function essentially
concatenates the input arguments. Next, the helper function tries to verify the
signature in Line 3. If the verification is successful, the initiator calculates and
returns the shared key k in Lines 5 and 7. The remaining code is needed to prove
the security properties and will be described in Section 5.

5 Security Analysis

In this section, we describe in detail how security properties can be proven within
the DY? framework, illustrated by the ISO-DH protocol. In particular, we show
how security properties can be stated as F? lemmas, encoded in trace invariants,
and how these invariants are enforced on the application code layer.

5.1 Forward Secrecy

A central security property of the ISO-DH protocol is the secrecy of the resulting
shared key, even if long-term secrets used by the initiator and responder become
corrupted. We formalize this forward secrecy property, which was already outlined
in Section 3, as an F? lemma as shown in Figure 5.

The lemma is formulated as a function of the LCrypto effect, but without a
return value (i.e., the type of the return value is unit). The pre-condition of the
lemma requires that the initiator a has finished the flow (modeled by a finishI
event) at a trace index i. If this is the case, then the lemma ensures that either
b has been corrupted at or before i, or the key has a join label (containing the
specific session and version identifiers at which a and b store the key) and cannot
be derived by the attacker unless it compromises one of these sessions (with
the respective version). In particular, as long as the specific sessions at which a

A Tutorial-Style Introduction to DY? 15

1 val receive_msg_1_helper:
2 b:principal → idx_msg:timestamp →
3 LCrypto (now:timestamp & a:principal & gx:msg now public) (pki isodh)
4 (requires (λ _→>))
5 (ensures (λ t0 (|now, _, _|) t1 → t0 == t1 ∧ now == trace_len t0))
6
7 let receive_msg_1_helper b idx_msg =
8 let (|now,_,w_msg1|) = receive_i idx_msg b in
9 let msg1 = parse_msg w_msg1 in

10 match msg1 with
11 | Success (Msg1 a gx) → (|now,a,gx|)
12 | _→ error "responder_send_msg_2:␣not␣a␣msg1"
13
14 val send_msg_2_helper: #idx:timestamp → b:principal → a:principal →
15 gx:msg idx public → LCrypto (timestamp × nat) (pki isodh)
16 (requires (λ t0 → later_than (trace_len t0) idx))
17 (ensures (λ t0 (i,si) t1 → trace_len t1 > trace_len t0 ∧ i == trace_len t1 − 1))
18
19 let send_msg_2_helper #idx b a gx =
20 let si = new_session_number b in
21 let (|_, skb|) = get_private_key b SIG sig_key_label in
22
23 let (|t1, y|) = rand_gen (readers [V b si 0]) (dh_usage "ISODH.dh_key") in
24 let gy = dh_pk y in
25
26 let new_ss_st = (ResponderSentMsg2 a gx gy y) in
27 let new_ss = serialize_valid_session_st t1 b si 0 new_ss_st in
28
29 assert (is_eph_priv_key (t1+1) y b si 0);
30 trigger_event b (respond a b gx gy y);
31 new_session b si 0 new_ss;
32
33 let t2 = global_timestamp () in
34 let sv: msg t2 public = sigval_msg2 a gx gy in
35 let (|t3,n_sig|) = rand_gen (readers [P b]) (nonce_usage "SIG_NONCE") in
36 let sg = sign skb n_sig sv in
37
38 let msg2 = Msg2 b gy sg in
39 let w_msg2 = serialize_msg t3 msg2 in
40 let i = send b a w_msg2 in
41 i,si

Fig. 3. Interface and Implementation of the Second Protocol Step. See module
ISODH.Protocol in [4] for full details. Note that we marked proof-related code with a
gray background (see also Section 5).

16 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

1 let initiator_verify_signature i si vi a b pkb x gx gy sig =
2 let sv = sigval_msg2 a gx gy in
3 if verify pkb sv sig then (
4 can_flow_to_public_implies_corruption i (P b);
5 let k = dh x gy in
6 dh_key_label_lemma isodh_global_usage i gy;
7 k
8) else (error "sig␣verification␣failed")

Fig. 4. Helper function for verifying the signature of the second message and – if the
signature is valid – calculating the shared DH key. See module ISODH.Protocol in [4].

1 val initiator_forward_secrecy_lemma: i:timestamp → a:principal → b:principal →
2 gx:bytes → gy:bytes → k:bytes → LCrypto unit (pki isodh)
3 (requires (λ t0 → i < trace_len t0 ∧ did_event_occur_at i a (finishI a b gx gy k)))
4 (ensures (λ t0 _t1 → t0 == t1 ∧ (corrupt_at i (P b) ∨ (
5 ∃si sj vi vj. is_labeled isodh_global_usage i k (join (readers [V a si vi])
6 (readers [V b sj vj])) ∧
7 (corrupt_at (trace_len t0) (V a si vi) ∨ corrupt_at (trace_len t0) (V b sj vj) ∨
8 is_unknown_to_attacker_at (trace_len t0) k)
9))))

Fig. 5. Forward Secrecy Theorem. See module ISODH.SecurityLemmas in [4].

and b store their key is not corrupted, the key stays secret even if the attacker
corrupts the long-term signing keys of a or b after the initiator has finished the
protocol run. We formulate a similar lemma for an event type indicating that
the responder has finished the protocol flow.

As explained in Section 2, the security properties are proven by an appropriate
instantiation of the valid_trace invariant from which the security properties should
follow. We show how a suitable valid_trace can be specified and how to utilize the
signature and event predicates in DY? to prove that the protocol code preserves
valid_trace.

Specifying valid_trace. In brief, we encode in valid_trace that, whenever a
(finishI a b gx gy k) event occurs on the trace, then the key k must have the label
(join (readers [V a si vi]) (readers [V b sj vj])) (for some values si, vi, sj, vj) if b is not
corrupted at i. Using a generic security lemma for labels provided by DY?, we
can then prove the secrecy of the key (see below). As described in Section 2, DY?

provides a straightforward way to define predicates on events using the parameter
of the LCrypto effect. The effect parameter used in this analysis is (pki isodh), i.e.,
event predicates on the finishI event can be defined in the isodh invariants (at the
application layer). For this purpose, we first define a predicate is_dh_shared_key
as follows (see module ISODH.Sessions):

1 let is_dh_shared_key (i:timestamp) (key:bytes) (a:principal) (b:principal) =
2 (∃ si sj vi vj. is_aead_key isodh_global_usage i key
3 (join (readers [V a si vi]) (readers [V b sj vj])) "ISODH.aead_key")

A Tutorial-Style Introduction to DY? 17

By using the is_aead_key predicate as shown, we require the key to be labeled
(join (readers [V a si vi]) (readers [V b sj vj])) (and to be used as an AEAD encryption
key); see module Labeled.CryptoAPI in [4].

For (finishI a b gx gy k) events, we now require (using the event predicate) that
(corrupt_id i (P b) ∨ is_dh_shared_key i k a b) must hold true. With such a predi-
cate on finishI events, we can easily infer that the label of a shared key is
(join (readers [V a si vi]) (readers [V b sj vj])) (for some values si, vi, sj, vj) as long
as principal b is not corrupted at or before trace index i. Next, we show how
we ensure that the protocol implementation fulfills this event predicate and why
is_dh_shared_key is true if b is not corrupted at or before i.

Implementation Fulfills valid_trace. Recall that by using the LCrypto effect
for protocol code, each function must ensure the validity of the resulting trace
after the function call, e.g., whenever an initiator creates a finishI event, it must
ensure that is_dh_shared_key is true if the responder is not corrupted.

Before the initiator of our model finishes the protocol run, it checks the
signature contained in the second message and computes the shared key (see
Figure 4). The post-condition of the function in Figure 4 looks as follows:

1 λ t0 k t1 → trace_len t0 == trace_len t1 ∧ k == CryptoLib.dh x gy ∧
2 is_msg isodh_global_usage i k (readers [V a si vi]) ∧ (
3 corrupt_id i (P b) ∨
4 (∃ y. k == CryptoLib.dh y gx ∧ is_dh_shared_key i k a b ∧
5 did_event_occur_before i b (respond a b gx gy y)))

Hence, when the initiator calls the helper function, it gets the shared key k and
the guarantees on k needed for the validity of the trace. (The did_event_occur_before
predicate is used only for authentication, see Section 5.2.) In the following, we
show why the helper function yields this post-condition.

As described in Section 4, the helper function tries to verify the signature
in Line 3 of Figure 4 using a verification key belonging to b (required by the
function type, not shown here). As described in Section 2, a successful verification
guarantees that either the signature predicate can_sign holds true or the signing
key is known to the attacker (see verify_lemma in Section 2). In the latter case, b,
the principal owning the signing key, must be corrupted, which is deduced by the
(generic) lemma can_flow_to_public_implies_corruption called in Line 4 of Figure 4.

To determine which guarantees the signature predicate can_sign needs to
provide, we first notice that the shared key k is calculated in Line 5 of Figure 4
using the dh function. The label of k is the join of the label of the initiator’s
secret key x, i.e., (readers [V a si vi]), and the label of the responder’s secret key
y. The connection between gy and the label of the corresponding secret key y
is established using the lemma dh_key_label_lemma called in Line 6. Therefore,
to show that is_dh_shared_key i k a b holds true, the signature predicate needs to
imply that the label of the private key of gy is equal to (readers [V b sj vj]), for
some session sj and version vj.

The idea for connecting the successful signature verification to the label of
the private key y is as follows: We formulate the signature predicate such that
the successful signature verification of the second message implies that, at a

18 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

previous trace index, the responder created an event, and define a predicate on
this event enforcing the required label on y. Following this roadmap, we construct
the application-specific signature predicate as follows:

1 match parse_sigval m with // parse the signature payload
2 | Success (SigMsg2 a gx gy) →
3 (∃ y. gy == (dh_pk y) ∧ did_event_occur_before i p (respond a p gx gy y))
4 ...

That is, the initiator code, after successful verification of the signature,
can use the fact that a respond event was created for the private key y. For
(respond a b gx gy y) events, we require (within the event predicate) that (∃si vi.
is_eph_priv_key i y b si vi) must be true, where the is_eph_priv_key predicate en-
forces, amongst others, that the label of y is (readers [V b si vi]).

Overall, when the signature verification is successful, the event predicate
implies that there is a private key y labeled with (readers [V b si vi]), and thus,
the key k returned by initiator_verify_signature has the label join (readers [V a si vi])
(readers [V b sj vj])) (for some values si, vi, sj, vj) if b is not corrupted at i.

We highlight that every function that triggers a respond event, in particular,
the responder function presented in Section 4, needs to ensure this property.
This can be automatically done by explicitly asserting is_eph_priv_key i y b si 0 in
Line 29, a statement then proven by F?.

Proving the Secrecy Lemma. The proof of the initiator_forward_secrecy_lemma
(Figure 5) essentially follows from valid_trace, in particular, from the label of the
shared key shown above, i.e., whenever a finishI event occurs, the label of the
shared key is (join (readers [V a si vi]) (readers [V b sj vj])) (for some values si, vi, sj,
vj) unless b is corrupted. Given this label, we can use the generic security lemma
secrecy_join_label_lemma provided by DY?, which states that if both ids of the join
label of the key are uncorrupted, then the attacker cannot derive the key. The
F? proof of initiator_forward_secrecy_lemma is now performed automatically by F?.
It only needs to be hinted at secrecy_join_label_lemma:

1 let initiator_forward_secrecy_lemma i a b gx gy k =
2 secrecy_join_label_lemma k // generic lemma from DY?

5.2 Authentication Properties

Besides the key secrecy property, we formulate and prove authentication proper-
ties. Here, we give a brief overview of these properties and refer to the module
ISODH.SecurityLemmas in [4] for their formal statements and proofs.

The authentication properties state that, after finishing a protocol flow, both
the initiator and responder agree on all session parameters. Hence, we formulate
two properties, one from the initiator’s perspective and one from the responder’s
perspective. The property from the initiator’s perspective states that, whenever
the initiator a finishes the flow and creates an event indicating that it finished the
run with b using the session parameters gx, gy, and the shared key k, then either
the responder has previously created an event indicating that it sent the second

A Tutorial-Style Introduction to DY? 19

protocol message to a with the same values gx, gy, and the private key y such
that k = (dh y gx), or the responder is corrupted. The authentication property
from the responder’s point of view is analogous.

6 Conclusion

DY? is a recently proposed framework for formal protocol analysis and verification,
a field which was shaped significantly by Joshua’s work, e.g., in [14,17,18,19,27,31].

In this paper, we have given a tutorial-style introduction to DY? to help
potential users of the framework to get started. DY? provides many more fea-
tures than what we have been able to show in this paper, such as reasoning on
unbounded loops, recursive data structures, low-level implementation aspects
like data encoding, and interoperability. As discussed in [5,6], we plan to enrich
DY? with even more features, including support for equivalence-based properties.

Acknowledgments

This work was partially supported by the Deutsche Forschungsgemeinschaft
(DFG) through Grants KU 1434/10-2 and KU 1434/12-1, the European Research
Council (ERC) through Grant CIRCUS-683032, and the Office of Naval Research
(ONR) through Grant N000141812618.

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., et al.:
The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In: CAV. LNCS, vol. 3576, pp. 281–285. Springer (2005)

2. Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K., Parno,
B.: SoK: Computer-Aided Cryptography. In: IEEE S&P. pp. 777–795 (2021)

3. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM TOPLAS 33(2), 8:1–8:45 (2011)

4. Bhargavan, K., Bichhawat, A., Do, Q.H., Hosseyni, P., Küsters, R., Schmitz,
G., Würtele, T.: DY? Code Repository, https://github.com/REPROSEC/
dolev-yao-star/tree/festschrift-guttman

5. Bhargavan, K., Bichhawat, A., Do, Q.H., Hosseyni, P., Küsters, R., Schmitz, G.,
Würtele, T.: DY?: A Modular Symbolic Verification Framework for Executable
Cryptographic Protocol Code. In: IEEE EuroS&P ’21. pp. 523–542 (2021)

6. Bhargavan, K., Bichhawat, A., Do, Q.H., Hosseyni, P., Küsters, R., Schmitz, G.,
Würtele, T.: An In-Depth Symbolic Security Analysis of the ACME Standard. In:
ACM CCS ’21 (2021), to appear

7. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified Models and Reference Imple-
mentations for the TLS 1.3 Standard Candidate. In: IEEE S&P. pp. 483–502 (2017)

8. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol
code by typing. In: ACM POPL. pp. 445–456 (2010)

9. Blanchet, B.: Security protocol verification: Symbolic and computational models.
In: POST. pp. 3–29 (2012)

https://github.com/REPROSEC/dolev-yao-star/tree/festschrift-guttman
https://github.com/REPROSEC/dolev-yao-star/tree/festschrift-guttman

20 Bhargavan, Bichhawat, Do, Hosseyni, Küsters, Schmitz, Würtele

10. Blanchet, B.: Modeling and Verifying Security Protocols with the Applied Pi Cal-
culus and ProVerif. Found. Trends Priv. Secur. 1(1-2)(1-2), 1–135 (2016)

11. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A Formal
Security Analysis of the Signal Messaging Protocol. In: IEEE EuroS&P. pp. 451–466
(2017)

12. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A Comprehen-
sive Symbolic Analysis of TLS 1.3. In: ACM CCS. pp. 1773–1788 (2017)

13. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Trans. Inf.
Theor. 29(2), 198–208 (1983)

14. Dougherty, D.J., Guttman, J.D.: An Algebra for Symbolic Diffie-Hellman Protocol
Analysis. In: TGC. LNCS, vol. 8191, pp. 164–181. Springer (2012)

15. Fett, D., Küsters, R., Schmitz, G.: A Comprehensive Formal Security Analysis of
OAuth 2.0. In: ACM CCS. pp. 1204–1215 (2016)

16. Fett, D., Küsters, R., Schmitz, G.: The Web SSO Standard OpenID Connect:
In-depth Formal Security Analysis and Security Guidelines. In: IEEE CSF. pp.
189–202 (2017)

17. Guttman, J.: Security protocol design via authentication tests. In: IEEE CSFW.
pp. 92–103 (2002)

18. Guttman, J., Thayer, F.: Protocol independence through disjoint encryption. In:
IEEE CSFW. pp. 24–34 (2000)

19. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theor. Comput. Sci. 283(2), 333–380 (2002)

20. ISO/IEC 9798-3:2019(E): IT Security techniques — Entity authentication — Part
3: Mechanisms using digital signature techniques. Tech. rep. (Jan 2019)

21. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure messag-
ing protocols and their implementations: A symbolic and computational approach.
In: IEEE EuroS&P. pp. 435–450 (2017)

22. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In: CRYPTO. pp. 400–425 (2003)

23. Lowe, G.: An Attack on the Needham-Schroeder Public-Key Authentication Pro-
tocol. Inf. Process. Lett. 56(3), 131–133 (1995)

24. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In: TACAS. pp. 147–166 (1996)

25. Meier, S., Schmidt, B., Cremers, C., Basin, D.A.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: CAV. LNCS, vol. 8044, pp. 696–701.
Springer (2013)

26. Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM 21(12), 993–999 (Dec 1978)

27. Ramsdell, J.D., Dougherty, D.J., Guttman, J.D., Rowe, P.D.: A Hybrid Analysis
for Security Protocols with State. In: IFM. pp. 272–287 (2014)

28. REPROSEC: REPROSEC Project (2021), https://reprosec.org/
29. Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure

distributed programming with value-dependent types. J. Funct. Program. 23(4),
402–451 (2013)

30. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., et al.:
Dependent types and multi-monadic effects in F?. In: ACM POPL. pp. 256–270
(2016)

31. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand Spaces: Proving Security Proto-
cols Correct. J. Comput. Secur. 7(1), 191–230 (1999)

https://reprosec.org/

	A Tutorial-Style Introduction to DY

